Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels (Q1307331)

From MaRDI portal





scientific article; zbMATH DE number 1354876
Language Label Description Also known as
English
Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
scientific article; zbMATH DE number 1354876

    Statements

    Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels (English)
    0 references
    31 October 1999
    0 references
    Let \(S^\infty\) be the unit sphere of the complex Hilbert space \(\ell^2\). Given any finite subset \(E\) of \(S^\infty\), we show how to construct large classes of continuous functions \(g\) defined on the unit disk \(\overline{\Delta(0,1)}:=\{\zeta\in \mathbb{C}:| \zeta| \leqq 1\}\) that solve the problem of interpolating arbitrary data on \(E\) by a function in the linear space \[ L_E:=\text{span}\{g(\langle\cdot ,w\rangle):w \in E\}. \]
    0 references
    Hilbert sphere
    0 references
    interpolation
    0 references
    unit sphere
    0 references
    complex Hilbert space \(\ell^2\)
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references