Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space (Q1312811)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space |
scientific article; zbMATH DE number 495452
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space |
scientific article; zbMATH DE number 495452 |
Statements
Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space (English)
0 references
11 October 1994
0 references
The author studies the index and the nullity of an operator \(L_ G\) associated to an arbitrary holomorphic map \(G: \Sigma \to S^ 2\), where \(\Sigma\) is a compact Riemann surface.
0 references
Morse index
0 references
Gauss map
0 references
complete minimal surfaces
0 references
deformation
0 references
eigenvalues
0 references
0.9617199
0 references
0.9402695
0 references
0.92997074
0 references
0.92076224
0 references
0 references
0.91146624
0 references