Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) (Q1312930)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) |
scientific article; zbMATH DE number 495864
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) |
scientific article; zbMATH DE number 495864 |
Statements
Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) (English)
0 references
4 July 1994
0 references
A new class \(W_{prs}(P_ r)=\{f\in L_ s(\mathbb{R})\), \(f^{(r-1)}\) is locally absolutely continuous on \(\mathbb{R}\) and \(\| P_ r\Bigl({d\over dt}\Bigr) f\|_{pq}\leq 1\}\), \(1\leq p\), \(q\), \(s\leq\infty\), \(P_ r\Bigl({d\over dt}\Bigr)=\prod^ r_{j=1}\Bigl({d\over dt}- t_ j\Bigr)\), \(t_ j\in\mathbb{R}\), is introduced. For \(W_{pll}\), among others, the exact expressions of the minimal information diameter, the minimal error of optimal recovery and the minimal linear error are given. No proofs.
0 references
minimal information diameter
0 references
minimal error of optimal recovery
0 references
minimal linear error
0 references
0 references
0.9076263
0 references
0.8942643
0 references
0.8895665
0 references
0.88479364
0 references