Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) (Q1312930)

From MaRDI portal





scientific article; zbMATH DE number 495864
Language Label Description Also known as
English
Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\)
scientific article; zbMATH DE number 495864

    Statements

    Infinite dimensional widths and optimal recovery of some smooth function classes of \(L_ p(\mathbb{R})\) in metric \(L(\mathbb{R})\) (English)
    0 references
    4 July 1994
    0 references
    A new class \(W_{prs}(P_ r)=\{f\in L_ s(\mathbb{R})\), \(f^{(r-1)}\) is locally absolutely continuous on \(\mathbb{R}\) and \(\| P_ r\Bigl({d\over dt}\Bigr) f\|_{pq}\leq 1\}\), \(1\leq p\), \(q\), \(s\leq\infty\), \(P_ r\Bigl({d\over dt}\Bigr)=\prod^ r_{j=1}\Bigl({d\over dt}- t_ j\Bigr)\), \(t_ j\in\mathbb{R}\), is introduced. For \(W_{pll}\), among others, the exact expressions of the minimal information diameter, the minimal error of optimal recovery and the minimal linear error are given. No proofs.
    0 references
    minimal information diameter
    0 references
    minimal error of optimal recovery
    0 references
    minimal linear error
    0 references
    0 references

    Identifiers