Minimal number of significant directional moduli of smoothness (Q1313670)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Minimal number of significant directional moduli of smoothness |
scientific article; zbMATH DE number 500208
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Minimal number of significant directional moduli of smoothness |
scientific article; zbMATH DE number 500208 |
Statements
Minimal number of significant directional moduli of smoothness (English)
0 references
7 July 1994
0 references
Let \(\Delta^ k_{he} f(x)\) be the \(k\)th finite difference of the function \(f(x)\), \(x\in D\subset\mathbb{R}^ d\), with respect to the domain \(D\), that is \[ \Delta^ k_{he} f(x)=\begin{cases} 0\quad\text{if Conv-hull } (x,x+khe)\not\subset D,\\ \sum^ k_{m=0} (-1)^{k-m}{k\choose m} f(x+ mhe)\quad\text{otherwise}.\end{cases} \] The directional \(k\)th modulus of smoothness for \(L_ p(D)\) is defined by \[ \omega^ k(f,e,t)_{L_ p(D)}=\sup_{| h|\leq t}\|\Delta^ k_{he} f(x)\|_{L_ p(D)}. \] The vector \(e\) is called the direction of \(\omega^ k(f,e,t)\). Then the modulus of smoothness is defined by \[ \omega^ k(f,t)_{L_ p(D)}= \sup_{| e|=1} \omega^ k(f,e,t)_{L_ p(D)}. \] In this paper the authors show that there exist \(n\) directions \(e_ 1,e_ 2,\dots,e_ n\) such that \[ \omega^ k(f,t)_{L_ p(D)}\leq C(k,p,D,n) \sup_{1\leq m\leq n} \omega^ k(f,e_ m,t)_{L_ p(D)}. \] The obtained results cannot be improved.
0 references
modulus of smoothness
0 references
0.8513708
0 references
0.84038043
0 references
0.8385661
0 references
0.8361834
0 references
0 references
0 references
0.82979655
0 references