On the distribution of supremum of diffusion local time (Q1314712)

From MaRDI portal





scientific article; zbMATH DE number 503673
Language Label Description Also known as
English
On the distribution of supremum of diffusion local time
scientific article; zbMATH DE number 503673

    Statements

    On the distribution of supremum of diffusion local time (English)
    0 references
    20 September 1994
    0 references
    \((X(t), P_ x)_{t\geq 0}\) is a one-dimensional regular diffusion on an interval with transitions \(p(t,x,y)\) and local time \(L_{t,x}\). The law of \(\sup_{t\geq 0}(L_{t,x}-\mu t)\), \(\mu\geq 0\), is computed to be under \(P_ x\) an exponential distribution with parameter \(\alpha^*(x)/\mu\), where \(\alpha^*\) is the unique positive solution of \(\alpha/\mu-1/G_ \alpha=0\), where \(G_ \alpha\) is the Green kernel \(\int\exp(-\alpha t)p(t,x,y)=dt\).
    0 references
    local time
    0 references
    regular diffusion
    0 references
    exponential distribution
    0 references
    Green kernel
    0 references
    0 references

    Identifiers