The \(abc\)-conjecture (Q1314951)

From MaRDI portal





scientific article; zbMATH DE number 509048
Language Label Description Also known as
English
The \(abc\)-conjecture
scientific article; zbMATH DE number 509048

    Statements

    The \(abc\)-conjecture (English)
    0 references
    0 references
    8 September 1994
    0 references
    The Masser-Oesterlé \(abc\) conjecture asserts that, given \(\varepsilon>0\), for all triples \(a\), \(b\), \(c\) of integers with \(a+b+c=0\) and \((a,b,c)=1\), we have \(\max( | a|,| b|,| c|)\ll_ \varepsilon \prod_{p\mid abc} p^{1+\varepsilon}\). First, Lang motivates this conjecture by stating and proving the analogue, Mason's theorem, in the function field case. He then shows how Mason's theorem and the \(abc\) conjecture (would) imply, respectively, an analogue of the Fermat conjecture over function fields, and the Fermat conjecture over number fields for sufficiently large exponent (``asymptotic Fermat''). The paper also discusses how the \(abc\) conjecture relates to a conjecture of M. Hall on \(| y^ 2- x^ 3|\) and to the generalized Szpiro conjecture.
    0 references
    0 references
    Hall conjecture
    0 references
    Masser-Oesterlé \(abc\) conjecture
    0 references
    Mason's theorem
    0 references
    function field
    0 references
    Fermat conjecture over function fields
    0 references
    Fermat conjecture over number fields
    0 references
    Szpiro conjecture
    0 references

    Identifiers