Generalized \(q\)-Legendre polynomials (Q1318415)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalized \(q\)-Legendre polynomials |
scientific article; zbMATH DE number 540470
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalized \(q\)-Legendre polynomials |
scientific article; zbMATH DE number 540470 |
Statements
Generalized \(q\)-Legendre polynomials (English)
0 references
10 October 1994
0 references
The author finds the polynomials \(u_ n\) satisfying the 3-term recursion: \[ (1-q^{n+1}) (1+q^ n) u_{n+1} - f_ nu_ n + q^{2n- 1} (1-q^ n) (1+q^{N+1}) u_{n-1} = 0, \] where \[ f_ n = (1- q^{2n+1}) \left( 2q^ n-(1+q^ n) (1+q^{n+1}) \sum_{j=0}^ nq^{-jn} \left[ {n \over j} \right]_ q \left[ {n+j \over j} \right]_ qx_ j \right). \] For \(x_ 0=x\), \(x_ j=0\), \(j \geq 1\), these give a \(q\)-analog of the Legendre polynomials: the \(\alpha = \beta = 1\) case of the little \(q\)-Jacobi polynomials.
0 references
\(q\)-Legendre polynomials
0 references