On subtractive varieties. I (Q1319053)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On subtractive varieties. I |
scientific article; zbMATH DE number 549247
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On subtractive varieties. I |
scientific article; zbMATH DE number 549247 |
Statements
On subtractive varieties. I (English)
0 references
24 November 1994
0 references
A variety \({\mathcal V}\) (or an algebra \({\mathbf A})\) is said to be subtractive if it satisfies the identities \(s(x,x) \approx 0\) and \(s(x,0) \approx x\) for some binary term \(s\) and some nullary term 0. Such an \(s\) is called a subtraction term. Let \({\mathcal K}\) be a class of similar algebras, then a term \(p({\mathbf x}, {\mathbf y}) = p(x_ 1, \dots, x_ m, y_ 1, \dots, y_ n)\) is a \({\mathcal K}\)-ideal term if the identity \(p({\mathbf x}, \mathbf{0}) \approx 0\) holds in \({\mathcal K}\) (we then write \(p({\mathbf x}, {\mathbf y})\in \text{IT}_{\mathcal K} ({\mathbf y}))\). An nonempty subset \(I\) of \({\mathbf A} \in {\mathcal K}\) is a \({\mathcal K}\)-ideal of \({\mathbf A}\) if for any \({\mathbf a} \in {\mathbf A}\) and \({\mathbf b} \in I\), \(p({\mathbf a},{\mathbf b}) \in I\). We write \(I({\mathbf A})\) instead of \(\text{I}_{\{{\mathbf A}\}} ({\mathbf A)}\) and let \(N({\mathbf A})\) denote \(\{ [0]_ \theta \mid \theta \in \text{Con} ({\mathbf A})\}\). Although subtractive varieties are not in general congruence modular, their congruences are 0-permutable. Moreover, if \({\mathbf A} \in {\mathcal V}\), a subtractive variety, then \(\text{I}_{\mathcal V} ({\mathbf A}) = \text{I} ({\mathbf A}) = \text{N} ({\mathbf A})\). Also, if \({\mathbf A}\) is subtractive, \(\text{I} ({\mathbf A})\) is modular. These facts enable a meaningful commutator to be defined for subtractive varieties, using ideals rather than congruences. This paper contains many interesting results about such commutators.
0 references
subtractive varieties
0 references
commutator
0 references
ideals
0 references
congruences
0 references
0.9202303
0 references
0.9074523
0 references
0.9005676
0 references
0.8895119
0 references
0 references
0.8823465
0 references
0.87935007
0 references
0.8754753
0 references
0.8749059
0 references