Optimal shift parameters for periodic spline interpolation (Q1319862)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Optimal shift parameters for periodic spline interpolation |
scientific article; zbMATH DE number 553667
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Optimal shift parameters for periodic spline interpolation |
scientific article; zbMATH DE number 553667 |
Statements
Optimal shift parameters for periodic spline interpolation (English)
0 references
2 May 1995
0 references
The following \(N\)-periodic spline interpolation problem is considered: For a given \(N\)-periodic real data sequence \(\{y_ j\}_{j=- \infty}^{\infty}\) with \(y_ j= y_{j+N}\), \(j\in \mathbb{Z}\), \(N\in \mathbb{N}\), and a fixed shift parameter \(\tau\in (-1/2,1/2]\) find an \(N\)-periodic spline function \(S\) such that \(S(k+\tau)= y_ k\), \(k\in \mathbb{Z}\). Using the discrete Fourier transform, the author gives a simple algorithm for the computation of the spline interpolant. Further, the condition of the interpolatory matrix and the norm of the spline interpolation operator are investigated and it is shown that for \(\tau= 0\) they are minimal.
0 references
exponential Euler splines
0 references
periodic spline interpolation
0 references
discrete Fourier transform
0 references
algorithm
0 references
0 references
0 references
0.9014734
0 references
0.89609337
0 references
0.8955631
0 references
0 references
0.88948363
0 references