Invariants of the block tensor product (Q1320007)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Invariants of the block tensor product |
scientific article; zbMATH DE number 553977
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Invariants of the block tensor product |
scientific article; zbMATH DE number 553977 |
Statements
Invariants of the block tensor product (English)
0 references
13 May 1994
0 references
The authors consider the following problem: Let \(X_ i\), \(i=1,2\), be vector spaces over \(\mathbb{C};Y_ i\) subspaces of \(X_ i\), \(i=1,2\): and \(f_ i\): \(Y_ i\to X_ i\), \(i=1,2\), linear maps defined on a subspace. They characterize the invariant of block similarity of \(f_ 1\otimes f_ 2\): \(Y_ 1\otimes Y_ 2\to X_ 1\otimes X_ 2\) in terms of the block similarity invariants of \(f_ 1\) and \(f_ 2\). The paper contains sections on Brunowsky numbers of the block direct product and elementary divisors of the block direct product.
0 references
block tensor product
0 references
linear maps
0 references
invariant of block similarity
0 references
Brunowsky numbers
0 references
block direct product
0 references
elementary divisors
0 references
0 references