A remark on Langley's generalisation of Hayman's alternative (Q1320075)

From MaRDI portal





scientific article; zbMATH DE number 554048
Language Label Description Also known as
English
A remark on Langley's generalisation of Hayman's alternative
scientific article; zbMATH DE number 554048

    Statements

    A remark on Langley's generalisation of Hayman's alternative (English)
    0 references
    0 references
    16 May 1994
    0 references
    Let \(f\) be transcendental meromorphic in the plane and set \(\psi= f^{(k)}+ a_{k-1} f^{(k-1)}+\cdots + a_ 0 f\), \(k\geq 1\), where \(a_ 0,\dots, a_{k-1}\) are small functions with respect to \(f\) (i.e.,\(T(r,a_ j)= S(r,f)\)). For \(\psi= f^{(k)}- 1\) \textit{W. K. Hayman} [Ann. Math., II. Ser. 79, 9-42 (1959; Zbl 0088.285)] proved the estimate \[ T(r,f)\leq 3N\Bigl(r,\textstyle{{1\over f}}\Bigr)+ 4\overline N\Bigl(r,\textstyle{{1\over \psi}}\Bigr)+ S(r,f). \] \textit{J. K. Langley} [Math. Z. 187, 1-11 (1984; Zbl 0563.30024), Mathematika 32, 132-146 (1985; Zbl 0559.30035)] has shown that this remains true for general \(\psi\), if some exceptional case is avoided. In the present paper, it is shown that in the exceptional case \(f\) has the form \({(H- \omega)^{k+1}\over k!H(H')^ k}\), where \(\omega^{k+1}= 1\) and \(H\) is meromorphic satisfying \({H''\over H'}= {2a_{k-1}\over k(k+ 1)}\).
    0 references
    linear differential polynomial
    0 references
    Hayman's alternative
    0 references

    Identifiers