On modified singular integrals (Q1321761)

From MaRDI portal





scientific article; zbMATH DE number 558859
Language Label Description Also known as
English
On modified singular integrals
scientific article; zbMATH DE number 558859

    Statements

    On modified singular integrals (English)
    0 references
    0 references
    6 April 1995
    0 references
    A singular integral operator \(Tf(x)=\text{p.v.}\int\Omega (x- y)f(y)dy\), where \(\Omega\) is a homogeneous function of degree \((-n)\) on \(\mathbb{R}^ n\) with zero mean over the unit sphere, is bounded on the weighted Lebesgue space \(L_ p(| x|^ \alpha)\) if and only if \(-n< \alpha< n(p- 1)\) [\textit{E. M. Stein}, Proc. Am. Math. Soc. 8, 250-254 (1957; Zbl 0077.273)]. The author introduces modified singular integral operators which are bounded on \(L_ p(| x|^ \alpha)\) for every \(\alpha< n(p- 1)\), \(\alpha\neq -n-kp\), where \(k\) is a given non-negative integer.
    0 references
    0 references
    weighted Lebesgue space
    0 references
    modified singular integral operators
    0 references

    Identifiers