On modified singular integrals (Q1321761)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On modified singular integrals |
scientific article; zbMATH DE number 558859
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On modified singular integrals |
scientific article; zbMATH DE number 558859 |
Statements
On modified singular integrals (English)
0 references
6 April 1995
0 references
A singular integral operator \(Tf(x)=\text{p.v.}\int\Omega (x- y)f(y)dy\), where \(\Omega\) is a homogeneous function of degree \((-n)\) on \(\mathbb{R}^ n\) with zero mean over the unit sphere, is bounded on the weighted Lebesgue space \(L_ p(| x|^ \alpha)\) if and only if \(-n< \alpha< n(p- 1)\) [\textit{E. M. Stein}, Proc. Am. Math. Soc. 8, 250-254 (1957; Zbl 0077.273)]. The author introduces modified singular integral operators which are bounded on \(L_ p(| x|^ \alpha)\) for every \(\alpha< n(p- 1)\), \(\alpha\neq -n-kp\), where \(k\) is a given non-negative integer.
0 references
weighted Lebesgue space
0 references
modified singular integral operators
0 references
0.9269013
0 references
0.8964338
0 references