Gaussian chaos and functional laws of the iterated logarithm for Itô- Wiener integrals (Q1322920)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gaussian chaos and functional laws of the iterated logarithm for Itô- Wiener integrals |
scientific article; zbMATH DE number 566211
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gaussian chaos and functional laws of the iterated logarithm for Itô- Wiener integrals |
scientific article; zbMATH DE number 566211 |
Statements
Gaussian chaos and functional laws of the iterated logarithm for Itô- Wiener integrals (English)
0 references
29 January 1995
0 references
The authors study random samples \(X_ 1, X_ 2,\dots\) of centered \(B\)- valued Gaussian chaos \(X= \sum_{i,j\geq 1} a_{ij} (g_ i g_ j- \delta_{ij})\), where \(a_{ij}\) are nonrandom elements of a separable Banach space \(B\) and \(g_ i\), \(i= 1,2,\dots\), is an i.i.d. sequence of stationary Gaussian random variables. It turns out that the random set \(E_ n= \{X_ 1,\dots, X_ n\}/2 \log n\) converges a.s. to a non- random compact set \(\Sigma\subset B\). The authors provide rates of convergence in a Hausdorff metric. Applications are given to multiple Wiener-Itô integrals, where \(B= C[0,T]\).
0 references
stationary Gaussian random variables
0 references
rates of convergence
0 references
Hausdorff metric
0 references
multiple Wiener-Itô integrals
0 references