Exponential decay estimates for solutions of the polyharmonic equation in a semi-infinite cylinder (Q1323063)

From MaRDI portal





scientific article; zbMATH DE number 566440
Language Label Description Also known as
English
Exponential decay estimates for solutions of the polyharmonic equation in a semi-infinite cylinder
scientific article; zbMATH DE number 566440

    Statements

    Exponential decay estimates for solutions of the polyharmonic equation in a semi-infinite cylinder (English)
    0 references
    0 references
    31 August 1994
    0 references
    We derive explicit Saint-Venant type decay estimates for solutions of the Dirichlet problem for the polyharmonic equation defined in a semi- infinite cylinder with homogeneous Dirichlet data on the lateral surface of the cylinder. The method we use is a weighted energy technique. The advantage of this weighted energy approach is that it allows us to treat simultaneously polyharmonic problems of any order. However, it achieves the optimal decay rate only in the harmonic case. For the sake of simplicity we consider only the case of three dimensions. In order to make our decay estimates explicit we require a bound for the total weighted energy in the half cylinder. We bound this total weighted energy in terms of ordinary total energy, and then bound the total energy in terms of the Dirichlet data on the finite end of the half cylinder.
    0 references
    explicit Saint-Venant type decay estimates
    0 references
    Dirichlet problem for the polyharmonic equation
    0 references
    semi-infinite cylinder
    0 references
    weighted energy technique
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references