Nonlinear superposition operators on space \(C([0,1],\mathbb{E})\) (Q1323171)

From MaRDI portal





scientific article; zbMATH DE number 566980
Language Label Description Also known as
English
Nonlinear superposition operators on space \(C([0,1],\mathbb{E})\)
scientific article; zbMATH DE number 566980

    Statements

    Nonlinear superposition operators on space \(C([0,1],\mathbb{E})\) (English)
    0 references
    0 references
    10 May 1994
    0 references
    Given a Banach space \(E\), the author shows that the Lipschitz condition \[ \| Fx_ 1- Fx_ 2\|\leq k(r) \| x_ 1-x_ 2\| \qquad (\| x_ 1\|, \| x_ 2\|\leq r) \] and the Darbo condition \[ \chi (F\Omega)\leq k(r)\chi(\Omega) \] for the Nemytskij operator \[ F: C([0,1],E)\to C([0,1], E) \] are equivalent. This generalizes the corresponding result for \(E=\mathbb{R}\) by the reviewer [J. Anal. Appl. 83, No. 1, 251-263 (1981; Zbl 0495.45007)].
    0 references
    Lipschitz condition
    0 references
    Darbo condition
    0 references
    Nemytskij operator
    0 references

    Identifiers