An inverse Sobolev lemma (Q1325215)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An inverse Sobolev lemma |
scientific article; zbMATH DE number 572265
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An inverse Sobolev lemma |
scientific article; zbMATH DE number 572265 |
Statements
An inverse Sobolev lemma (English)
0 references
24 May 1994
0 references
The inverse Sobolev lemma in this context means the following: Let \(0< p\leq n\), and suppose that \(f\) is a quasiconformal mapping of the unit ball \(B\) of \(\mathbb{R}^ n\) into \(\mathbb{R}^ n\). Then the derivative \(f'\) is in \(L^ q(B)\) for all \(0< q<p\) if and only if \(f\) is in \(L^ s(B)\) for all \(0< s<pn/(n- p)\). The proof employs the average derivative of a quasiconformal mapping [\textit{K. Astala} and \textit{W. F. Gehring}, J. Anal. Math. 46, 16-57 (1986; Zbl 0628.30026)]. This is used to relate the integrability of \(f\) to the growth of the \(f\), and thus to \(f'\).
0 references
integrability of the derivative of quasiconformal mapping
0 references
0 references
0.89838326
0 references
0 references
0.8944222
0 references
0.8929626
0 references
0.8926427
0 references
0.89073735
0 references
0 references
0 references