A note on Hermite-Fejér interpolation on equidistant nodes (Q1325247)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on Hermite-Fejér interpolation on equidistant nodes |
scientific article; zbMATH DE number 572400
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on Hermite-Fejér interpolation on equidistant nodes |
scientific article; zbMATH DE number 572400 |
Statements
A note on Hermite-Fejér interpolation on equidistant nodes (English)
0 references
24 May 1994
0 references
The purpose of this paper is to point out that the convergence of Hermite Fejér interpolation of odd degree is not an isolated phenomenon: If \(f \langle -1,1 \rangle \to ( - \infty + \infty)\) is bounded and continuous at 0, then \(\lim_{n \to \infty} H_{2n - 1} (f,0) = f(0)\).
0 references
Hermite Fejér interpolation
0 references