Boundedness and asymptotic behavior of solutions of a forced difference equation (Q1326631)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Boundedness and asymptotic behavior of solutions of a forced difference equation |
scientific article; zbMATH DE number 569409
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Boundedness and asymptotic behavior of solutions of a forced difference equation |
scientific article; zbMATH DE number 569409 |
Statements
Boundedness and asymptotic behavior of solutions of a forced difference equation (English)
0 references
10 April 1995
0 references
Consider the forced nonlinear difference equation \(\Delta [y_ n + p_ n y_{n-h}] + q_ n f(y_{n-k}) = r_ n\) where \(h,k \in \{0,1, \dots\}\) and \(f : \mathbb{R} \to \mathbb{R}\) is continuous with \(uf(u) > 0\) for \(u \neq 0\). The authors present conditions which are sufficient for nonoscillatory or so-called \(Z\)-type solutions to be bounded or converge to zero. Examples illustrating the results are also included.
0 references
asymptotic behavior
0 references
\(Z\)-type solutions
0 references
nonoscillatory solutions
0 references
bounded solutions
0 references
forced nonlinear difference equation
0 references