On some constants in Banach spaces (Q1327129)

From MaRDI portal





scientific article; zbMATH DE number 590074
Language Label Description Also known as
English
On some constants in Banach spaces
scientific article; zbMATH DE number 590074

    Statements

    On some constants in Banach spaces (English)
    0 references
    0 references
    0 references
    15 June 1994
    0 references
    For any normed space \(X\) put: \[ J_ f(X)=\sup\left\{{2r(A)\over d(A)};\;A\subset X,\;A \text{ finite, card }(A)\geq 2\right\} \] and \[ B(X)=\sup\left\{{2\inf\Bigl\{\sum_{a\in A}\| x-a\|:x\in X\Bigr\}\over\text{card}(A)d(A)};\;A\subset X,\;A\text{ finite, card }(A)\geq 2\right\} \] where \(r(A)\) is the Chebyshev radius and \(d(A)\) denotes the diameter of \(A\). The main result of this note is that \(B(X)=J_ f(X)\) for \(X\) being a finite dimensional space. We also prove this equality for other cases.
    0 references
    Chebyshev center
    0 references
    projections
    0 references
    Chebyshev radius
    0 references
    diameter
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references