Minima of some non convex non coercive problems (Q1327141)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Minima of some non convex non coercive problems |
scientific article; zbMATH DE number 590101
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Minima of some non convex non coercive problems |
scientific article; zbMATH DE number 590101 |
Statements
Minima of some non convex non coercive problems (English)
0 references
1 March 1995
0 references
The authors give an existence proof for a solution of the following problem of the calculus of variations: \[ \int^ 1_ 0 f(x,u,u')dx+ \widetilde h\left( \int^{u(1)}_ 0 a(0,s)ds+ \int^ \lambda_{u(1)} a(1,s)ds\right)\to \min_{u\in \overline w_ p}, \] where \(\overline w_ p= \bigl\{u\in w^{1,p}_{\text{loc}}(0,1)\mid u(0)\geq 0,\;u(1)\leq \lambda,\;u'\geq 0\;\text{a.e.}\bigr\}\) and \(\lambda\in \mathbb{R}_ +\), \(p\geq 1\).
0 references
non coercive problem
0 references
minima
0 references
0.9503681
0 references
0.9421727
0 references
0.93745124
0 references
0.9256978
0 references
0.92301273
0 references
0.9153179
0 references
0.9152799
0 references