Some imbedding theorems concerning the moduli of Ditzian and Totik (Q1329202)

From MaRDI portal





scientific article; zbMATH DE number 598209
Language Label Description Also known as
English
Some imbedding theorems concerning the moduli of Ditzian and Totik
scientific article; zbMATH DE number 598209

    Statements

    Some imbedding theorems concerning the moduli of Ditzian and Totik (English)
    0 references
    0 references
    29 June 1994
    0 references
    \textit{Z. Ditzian} and \textit{V. Totik} [`Moduli of Smoothness' (1987; Zbl 0666.41001)] defined a modulus of continuity \(\omega_\varphi(f, \delta)_p\) on functions \(f\) from \(L^p(0, 1)\). In fact, for \(1\leq p< \infty\), \(0\leq \delta\leq 1\) and certain functions \(\varphi\) on \((0, 1)\), \[ \omega_\varphi(f, \delta)_p= \sup_{0\leq h\leq \delta} \Biggl( \int_{E_h} |f(x+ \varphi(x) h)- f(x)|^p dx\Biggr)^{1/p}, \] where \(E_h= \{x: x+ \varphi(x) h\in (0, 1)\}\). If \(\omega\) is an arbitrary modulus of continuity, then the Hölder type class \(H^{*\omega}_{\varphi, p}\) is the class of nonnegative, decreasing \(L^p\)-functions \(f\) for which \(\omega_\varphi(f, \delta)_p= O(\omega(\delta))\) as \(\delta\to 0\). Necessary and sufficient conditions are obtained under which \(H^{*\omega}_{\varphi, p}\subseteq S\) for symmetric function classes \(S\). For monotone functions, the results are analogues of those of Uljanov, who considered the case \(\varphi\equiv 1\) and \(S= L^q\), \(1\leq p< q< \infty\), and of Lapin.
    0 references
    rearrangement
    0 references
    Hölder type class
    0 references
    modulus of continuity
    0 references
    0 references

    Identifiers