Hyperbolic loops over octaves and \(K\)-loops (Q1329596)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hyperbolic loops over octaves and \(K\)-loops |
scientific article; zbMATH DE number 604857
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hyperbolic loops over octaves and \(K\)-loops |
scientific article; zbMATH DE number 604857 |
Statements
Hyperbolic loops over octaves and \(K\)-loops (English)
0 references
22 September 1994
0 references
Let \(K\) be a euclidean field, \(L = K(i)\) the complex numbers over \(K\), \(H\) the skewfield of quaternions over \(K\) and \(O\) the alternative algebra of Cayley numbers over \(K\). We use the following notations for Hermitian matrices over \(O\) resp. \(H\) resp. \(L\): \[ \begin{multlined}{\mathfrak U} := \left\{\left( \begin{smallmatrix} \alpha & a\\ \overline{a} & \beta\end{smallmatrix} \right)\mid\alpha,\beta \in K, \;a \in O\right\},\quad {\mathfrak A} := \left\{\left( \begin{smallmatrix} \alpha & a \\ \overline{a} & \beta \end{smallmatrix} \right)\mid\alpha, \beta\in K,\;a \in H\right\},\\ {\mathfrak H} := \left\{ \left( \begin{smallmatrix} \alpha & a \\ \overline{a} & \beta \end{smallmatrix} \right)\mid\alpha, \beta \in K,\;a \in L\right\},\qquad\\ {\mathfrak U}^{++} := \{U \in {\mathfrak U} \mid \text{det }U > 0, \text{tr }U > 0\},\quad{\mathfrak U}^{1+} := \{U \in {\mathfrak U} \mid \text{det }U = 1,\;\text{tr }U > 0\}.\end{multlined} \] Analogously \({\mathfrak A}^{++}\), \({\mathfrak A}^{1+}\), \({\mathfrak H}^{++}\), \({\mathfrak H}^{1+}\) are defined. Then it is shown that all these sets of matrices are loops with respect to the operation: \[ A \oplus B := \sqrt{A} B \sqrt{A} \text{ with }\sqrt{A} = {\sqrt{\text{det}A} E + A\over \sqrt{\text{tr }A + 2\sqrt{\text{det }A}}} \] where juxtaposition means the usual matrixmultiplication. The main result of this paper consists in proving that \(({\mathfrak A}^{++},\oplus)\) and \(({\mathfrak A}^{1+},\oplus)\) are \(K\)- loops. This generalizes the earlier known result that \(({\mathfrak H}^{++},\oplus)\) and \(({\mathfrak H}^{1+},\oplus)\) are \(K\)-loops.
0 references
euclidean field
0 references
quaternions
0 references
alternative algebra
0 references
Cayley numbers
0 references
Hermitian matrices
0 references
\(K\)-loops
0 references