On non-real eigenvalues of Schrödinger operators in a weighted Hilbert space (Q1331255)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On non-real eigenvalues of Schrödinger operators in a weighted Hilbert space |
scientific article; zbMATH DE number 621965
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On non-real eigenvalues of Schrödinger operators in a weighted Hilbert space |
scientific article; zbMATH DE number 621965 |
Statements
On non-real eigenvalues of Schrödinger operators in a weighted Hilbert space (English)
0 references
3 February 1997
0 references
The authors prove a nonexistence result for the eigenvalue problem in a weighted function space for the operator \[ L= \sum_{j, k} \Biggl( {\partial\over \partial x_j}+ ib_j(x)\Biggr) a_{jk}(x) \Biggl({\partial\over \partial x_k}+ ib_k(x)\Biggr)+ V(x) \] in \(\mathbb{R}^n\). In addition, they also give examples where such eigenfunctions do exist.
0 references
upper bounds for eigenvalues counterexamples
0 references
0 references