A note on differential ideals of a commutative ring (Q1331672)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on differential ideals of a commutative ring |
scientific article; zbMATH DE number 624784
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on differential ideals of a commutative ring |
scientific article; zbMATH DE number 624784 |
Statements
A note on differential ideals of a commutative ring (English)
0 references
7 June 1995
0 references
Soit \(R\) un anneau local noethérien qui contient le corps des nombres rationels. L'A. démontre les propriétés suivantes: Si \(M\) est l'idéal maximal de \(R\) et \(d\) une dérivation de \(R\) telle que \(d(M) \nsubseteq M\), alors il existe un système de générateurs \(S\) de \(M\) tel que \(m^{k-1}\) soit contenu dans \(M^ k + d(M^ k)\) pour tout \(k \geq 1\) et \(m \in S\). De plus, \(M^ 2 + d(M^ 2) = M\). Si \(P\) est un idéal premier de \(R\) tel que \(d(P) \subseteq P\), alors l'anneau \(d^{- 1} (P)\) est integralement clos dans \(R\).
0 references
differential ideals
0 references
local noetherian ring
0 references
derivation
0 references
integrally closed ring
0 references
0.9280479
0 references
0.9196601
0 references
0.9141356
0 references
0.9102545
0 references
0.9097537
0 references