An embedding theorem for functions whose Fourier transforms are weighted square summable (Q1332668)

From MaRDI portal





scientific article; zbMATH DE number 627642
Language Label Description Also known as
English
An embedding theorem for functions whose Fourier transforms are weighted square summable
scientific article; zbMATH DE number 627642

    Statements

    An embedding theorem for functions whose Fourier transforms are weighted square summable (English)
    0 references
    1 September 1994
    0 references
    Summary: Our main result is, by elementary means only, an embedding theorem for functions \(f\) whose Fourier transforms \(\widetilde{f}\) are weight square summable, i.e. \(\int_{\mathbb{R}^ n} | \widetilde{f} (\lambda)|^ 2 w(\lambda) d\lambda<\infty\), where the weight function \(w: \mathbb{R}^ n\to (0,\infty)\) satisfies the Kolmogorov condition \(\int_{\mathbb{R}^ n} w(\lambda)^{-1} d\lambda <\infty\). The necessary and sufficient condition on a non-negative Borelian measure on \(\mathbb{R}^ n\) is given, for the inequality \(\int_{\mathbb{R}^ n} | f(t)|^ 2 \mu(dt)\leq A\int_{\mathbb{R}^ n} |\widetilde{f} (\lambda)|^ 2 w(\lambda)d\lambda\) to hold for every such function \(f\), with a constant \(A<\infty\) not depending on \(f\).
    0 references
    weighted functional spaces
    0 references
    embedding theorem
    0 references
    Fourier transforms
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references