A Fourier inequality with \(A_ p\) and weak-\(L^ 1\) weight (Q1332996)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Fourier inequality with \(A_ p\) and weak-\(L^ 1\) weight |
scientific article; zbMATH DE number 633982
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Fourier inequality with \(A_ p\) and weak-\(L^ 1\) weight |
scientific article; zbMATH DE number 633982 |
Statements
A Fourier inequality with \(A_ p\) and weak-\(L^ 1\) weight (English)
0 references
3 January 1995
0 references
The following weighted Fourier norm inequality is obtained: Let \(\omega\in A_ p\) be a radial weight function, which as radial function is non-decreasing in \((0,\infty)\). If \(\varphi\in L^ 1_{\text{weak}}\) and \(1< p\leq q\leq p'< \infty\), then the weighted Fourier inequality \[ \left\{\int_{\mathbb{R}^ n} | \widehat f(x)|^ q \omega\left({1\over | x|}\right)^{q/p} \varphi(x)^{1-q/p'} dx\right\}^{1/q}\leq C\left\{ \int_{\mathbb{R}^ n} | f(x)|^ p \omega(x)dx\right\}^{1/p} \] is satisfied. The cases \(\varphi(x)= | x|^{-n}\) and \(\omega(x)\equiv 1\) are known [cf. the author and \textit{G. J. Sinnamon}, Indiana Univ. Math. J. 38, No. 3, 603-628 (1989; Zbl 0668.42003), respectively \textit{L. Hörmander}, Acta Math. 104, 93-140 (1960; Zbl 0093.114).
0 references
\(A_ p\)-weights
0 references
weak \(L^ 1\) weights
0 references
weighted Fourier norm inequality
0 references
radial weight function
0 references
0.91169137
0 references
0.90135044
0 references
0.8956786
0 references
0.8950281
0 references
0.89231706
0 references
0.8912736
0 references
0.8878022
0 references
0.8857376
0 references