Correspondence for \({\mathcal D}\)-modules and Penrose transform (Q1333758)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Correspondence for \({\mathcal D}\)-modules and Penrose transform |
scientific article; zbMATH DE number 640269
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Correspondence for \({\mathcal D}\)-modules and Penrose transform |
scientific article; zbMATH DE number 640269 |
Statements
Correspondence for \({\mathcal D}\)-modules and Penrose transform (English)
0 references
28 March 1995
0 references
The authors apply the language of sheaves and \({\mathcal D}\)-modules to the study of the Penrose transform. Let \(g : Y \to Z\) and \(f : Y \to X\) be morphisms of complex manifolds such that \(f\) is proper, \(g\) is smooth and \((f,g) : Y \to Z \times X\) is a closed embedding. The authors give a formula that allows to identify the solutions of a \({\mathcal D}\)-module \({\mathcal N}\) on \(X\) and the corresponding solutions of the Penrose transform of \({\mathcal N}\). Then they state a criterion which ensures that the Penrose transform of a \({\mathcal D}\)-module \({\mathcal N}\) is concentrated in degree zero. Moreover they find an equivalence between a category of coherent \({\mathcal D}\)-modules on \(Z\) and a category of coherent \({\mathcal D}_ X\)-modules on \(X\).
0 references
derived category
0 references
\({\mathcal D}\)-module
0 references
Penrose transform
0 references
0.92195654
0 references
0.9079023
0 references
0.89828825
0 references
0.8964584
0 references
0.8874727
0 references
0.8822792
0 references