A summability method for the arithmetic Fourier transform (Q1335004)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A summability method for the arithmetic Fourier transform |
scientific article; zbMATH DE number 644797
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A summability method for the arithmetic Fourier transform |
scientific article; zbMATH DE number 644797 |
Statements
A summability method for the arithmetic Fourier transform (English)
0 references
27 September 1995
0 references
The arithmetic Fourier transform can be used to calculate the Fourier cosine coefficients \(a_ n\) of an even \(2 \pi\)-periodic function \(f\). Assume that \(f\) is sufficiently smooth, and that \(a_ 0 = 0\). If \(\mu\) denotes the Möbius function and if \(S(n) : = {1 \over n} \sum^{n - 1}_{j = 0} f({2 \pi j \over n})\), then \(a_ n = \sum^ \infty_{k = 1} \mu (k) S(nk)\), \(n \geq 1\). The author introduces a modified version of this method and gives a numerical example.
0 references
summability method
0 references
periodic function
0 references
arithmetic Fourier transform
0 references
Fourier cosine coefficients
0 references
Möbius function
0 references
numerical example
0 references
0.90084594
0 references
0.8991382
0 references
0.89519054
0 references