Direct estimate for Bernstein polynomials (Q1335050)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Direct estimate for Bernstein polynomials |
scientific article; zbMATH DE number 645064
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Direct estimate for Bernstein polynomials |
scientific article; zbMATH DE number 645064 |
Statements
Direct estimate for Bernstein polynomials (English)
0 references
27 September 1994
0 references
The following pointwise approximation for the Bernstein polynomials \(B_ n (f,x)= \sum_{k=0}^ n {\binom nk} x^ k (1-x)^{n -k} f(k/n)\) are proved: \[ | B_ n (f,x)- f(x)|\leq C\omega^ 2_{\varphi^ \lambda} (f, n^{-1/2} \varphi (x)^{1- \lambda}), \qquad 0\leq \lambda\leq 1, \quad \varphi(x)^ 2= x(1-x). \] This estimates yields a unified treatment of the classical estimate \((\lambda=0)\) and the norm estimate \((\lambda=1)\).
0 references
Bernstein polynomials
0 references