Weight spaces and root spaces of Kac-Moody algebras (Q1335108)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weight spaces and root spaces of Kac-Moody algebras |
scientific article; zbMATH DE number 645115
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weight spaces and root spaces of Kac-Moody algebras |
scientific article; zbMATH DE number 645115 |
Statements
Weight spaces and root spaces of Kac-Moody algebras (English)
0 references
28 September 1994
0 references
Let \({\mathfrak g} (A)\) be the Kac-Moody algebra associated to a symmetric generalized Cartan matrix. The purpose of the paper under review is to give an explicit realization of the weight spaces of an integrable highest weight \({\mathfrak g} (A)\)-module \(L(\lambda)\) and the weight spaces of the universal enveloping algebra \(U({\mathfrak n}_ -)\) in terms of certain spaces of rational functions. The approach is based on an embedding of \(L(\lambda)\) in the (shifted) Fock space \(V_ \lambda\) constructed from the root lattice of \({\mathfrak g} (A)\) [see \textit{R. E. Borcherds}, Proc. Natl. Acad. Sci. USA 84, 3068-3071 (1986; Zbl 0613.17012)]. It is difficult to characterize the weight subspace \(L(\lambda)_{\lambda - \ell_ 1 \alpha_ 1 - \cdots - \ell_ N \alpha_ N}\) within \(V_ \lambda\), and the main results are obtained by passing to the matrix coefficients \(x \mapsto \langle e^ \lambda\), \(\prod Y(e^{\alpha_ j}\), \(z_{j,i})x \rangle\), \(1 \leq j \leq N\), \(l \leq i \leq \ell_ j\), for vertex operators, and characterizing the weight subspace in terms of this map.
0 references
root spaces
0 references
integrable highest weight module
0 references
Kac-Moody algebra
0 references
explicit realization
0 references
weight spaces
0 references
universal enveloping algebra
0 references
vertex operators
0 references
0.7981385
0 references
0.7935299
0 references
0.7706719
0 references
0.7647977
0 references
0.7552678
0 references
0.7541925
0 references
0.7493267
0 references
0.7489017
0 references
0.7395681
0 references