Nowhere differentiable Lipschitz maps and the Radon-Nikodým property (Q1336224)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nowhere differentiable Lipschitz maps and the Radon-Nikodým property |
scientific article; zbMATH DE number 663743
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nowhere differentiable Lipschitz maps and the Radon-Nikodým property |
scientific article; zbMATH DE number 663743 |
Statements
Nowhere differentiable Lipschitz maps and the Radon-Nikodým property (English)
0 references
22 October 1995
0 references
The author proves that a Banach space \(X\) fails the RNP if and only if there is an equivalent norm \(||| \cdot |||)\) for \(X\) and an isometry \(U: \mathbb{R}\mapsto (X,||| \cdot |||\) such that \(U\) is nowhere differentiable on \(\mathbb{R}^ 1\). He also gives a characterization of closed convex sets which lack the RNP in terms of nowhere differentiability of Lipschitz maps.
0 references
Radon-Nikodým property
0 references
nowhere differentiability of Lipschitz maps
0 references
0.9253816
0 references
0.9025116
0 references
0.8963452
0 references
0.8956362
0 references
0.8941175
0 references
0.8888054
0 references