A Poisson approximation for the number of \(k\)-matches (Q1336933)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Poisson approximation for the number of \(k\)-matches |
scientific article; zbMATH DE number 681913
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Poisson approximation for the number of \(k\)-matches |
scientific article; zbMATH DE number 681913 |
Statements
A Poisson approximation for the number of \(k\)-matches (English)
0 references
6 November 1994
0 references
Let \(y_ 1,\dots,y_ n\) be independent and identically distributed random variables, with only finitely many possible values. Set \(I_ i = I[y_ i \in \{y_{i-1},\dots,y_{i-k}\}]\) if \(i > k\), \(I_ i = I[y_ i \in \{y_{i - 1}, \dots , y_ 1\}]\) if \(i \leq k\), and let \(X_ n = \sum^ n_{i = 1} I_ i\). The authors use the Stein-Chen method to show how close the distribution of \(X_ n\) is to a Poisson distribution. The results improve those of \textit{B. C. Arnold} [J. Appl. Probab. 9, 841-846 (1972; Zbl 0248.60016)].
0 references
Stein-Chen method
0 references
Poisson distribution
0 references
0 references
0.91875696
0 references
0.90718794
0 references
0.9071445
0 references
0.9064754
0 references
0.8825697
0 references
0.86229223
0 references