The information matrix of multiple-input single-output time series models (Q1339357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The information matrix of multiple-input single-output time series models |
scientific article; zbMATH DE number 699111
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The information matrix of multiple-input single-output time series models |
scientific article; zbMATH DE number 699111 |
Statements
The information matrix of multiple-input single-output time series models (English)
0 references
2 May 1995
0 references
The authors consider the multiple-input single-output model defined by the equation \[ {\frac{A(q^{-1})}{F(q^{-1})}} y(t)= {\frac{B_ 1(q^{-1})}{E_ 1(q^{-1})}} u_ 1(t)+\cdots+{\frac{B_ m(q^{- 1})}{E_ m(q^{-1})}} u_ m(t)+ {\frac{C(q^{-1})}{D(q^{- 1})}}\varepsilon(t), \] where \(y(t)\) is the output variable, \(u_ 1(t),\dots, u_ m(t)\) are the input variables, \(\{\varepsilon(t)\}\) is a white noise process with zero mean and standard deviation \(\sigma_{\varepsilon}\), \(A(q^{-1})\), \(B_ 1(q^{-1}),\dots\), \(B_ m(q^{-1})\), \(C(q^{-1})\), \(F(q^{-1})\), \(E_ 1(q^{-1}),\dots, E_ m(q^{-1})\), \(D(q^{-1})\) are polynomials in the unit delay operator \(q^{-1}\), e.g. \(A(q^{-1})= a_ 0+ a_ 1 q^{-1}+ \cdots+ a_ k q^{-k}\). The input variables are driven by the ARMA processes. The model under consideration is a generalization of the multiple regression model with autocorrelated errors, the transfer model and the autoregressive moving average exogeneous (ARMAX) model. The main result of the paper are explicit expressions for the information matrix of the parameters of this model for correlated and uncorrelated inputs, involving lags between inputs.
0 references
correlated inputs
0 references
ARMA processes
0 references
ARMAX
0 references
autoregressive moving average exogenous model
0 references
multiple-input single-output model
0 references
multiple regression model
0 references
information matrix
0 references
0.89496183
0 references
0.89145076
0 references
0.88976574
0 references
0.88794094
0 references
0.8832538
0 references
0.87800944
0 references
0.8669542
0 references