Dirichlet problem characterization of regularity (Q1340220)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Dirichlet problem characterization of regularity |
scientific article; zbMATH DE number 701151
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Dirichlet problem characterization of regularity |
scientific article; zbMATH DE number 701151 |
Statements
Dirichlet problem characterization of regularity (English)
0 references
23 July 1995
0 references
The author studies the regularity of the solutions to the Dirichlet problem \[ Lu\equiv -(a_{ij} u_{x_ i} )_{x_ j}= f \quad\text{in }\Omega, \qquad u=0 \quad \text{in }\partial\Omega \tag{1} \] where \(\mu\) is a given bounded variation measure on \(\Omega\) (bounded open subset of \(\mathbb{R}^ n\)), \(a_{ij}= a_{ji}\in L^ \infty (\Omega)\), \(i,j= 1,\dots, n\) and the ellipticity condition \(\nu^{-1} |\xi |^ 2\leq a_{ij} \xi_ i\xi_ j\leq \nu| \xi|^ 2\), \(\forall\xi \in\mathbb{R}^ n\), \(\nu>0\) is satisfied. By means of the definition of very weak solutions to (1) and Green functions he finds spaces to which the measure \(\mu\) must belong in order to get the solution \(u\) is in some \(L^ p\) classes, in \(L^ \infty\), in \(C^ 0\), and in \(C^{0,\alpha}\). The following propositions are proved: Let \(f\in L^ 1 (\Omega)\), \(f\geq 0\) and \(u\in L^ 1 (\Omega)\) be the very weak solution to (1). Then (a) \(u\in L^ p_{\text{loc}} (\Omega)\) iff \(f\in M^ p_{\text{loc}} (\Omega)\), \(1<p <\infty\) (Schechter spaces), (b) \(u\in L^ \infty_{\text{loc}} (\Omega)\) iff \(f\in \widetilde {S}_{\text{loc}} (\Omega)\) (Stummel-Kato spaces), (c) \(u\in C^ 0_{\text{loc}} (\Omega)\) iff \(f\in S_{\text{loc}} (\Omega)\) (Stummel-Kato spaces), (d) \(u\in C^{0,\alpha}_{\text{loc}} (\overline {\Omega})\) iff \(\widetilde {f}\in L_{\text{loc}}^{1,n- 2+ 2\alpha} (\Omega)\) (Morrey spaces). Here he uses the functions on the right hand side of (1) for simplicity in the statements and proofs only.
0 references
Schechter spaces
0 references
Stummel-Kato spaces
0 references
Morrey spaces
0 references
very weak solutions
0 references
0 references