An oscillating integral in \(\dot{B}_ 1^{0,1}(\mathbb{R}^ n)\) (Q1340602)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An oscillating integral in \(\dot{B}_ 1^{0,1}(\mathbb{R}^ n)\) |
scientific article; zbMATH DE number 703373
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An oscillating integral in \(\dot{B}_ 1^{0,1}(\mathbb{R}^ n)\) |
scientific article; zbMATH DE number 703373 |
Statements
An oscillating integral in \(\dot{B}_ 1^{0,1}(\mathbb{R}^ n)\) (English)
0 references
19 January 1995
0 references
The author considers singular integrals of the type \(Tf= \text{p.v. }\Omega^* f\), where \(\Omega(x)= K(x) e^{ih(x)}\), \(K(x)\) is a Calderón-Zygmund kernel and \(h(x)\) is a real valued phase function satisfying \(|\nabla h(x)|\approx | x|^ \gamma\), \(| D^ J h(x)|\leq c| x|^{\gamma- 1}\), \(| J|= 2\). It is shown that under the assumption that the Fourier transform of \(\Omega\) is continuous on \(\mathbb{R}^ n\backslash \{0\}\), \(T\) extends to a bounded operator on the Besov space \(\dot{B}^{0,1}_ 1(\mathbb{R}^ n)\) if and only if \(T\) is bounded on \(L^ 2(\mathbb{R}^ n)\).
0 references
singular integrals
0 references
Calderón-Zygmund kernel
0 references
Fourier transform
0 references
Besov space
0 references