On an effective order estimate of the Dirichlet \(L\)-functions in the critical strip (Q1343472)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an effective order estimate of the Dirichlet \(L\)-functions in the critical strip |
scientific article; zbMATH DE number 713624
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an effective order estimate of the Dirichlet \(L\)-functions in the critical strip |
scientific article; zbMATH DE number 713624 |
Statements
On an effective order estimate of the Dirichlet \(L\)-functions in the critical strip (English)
0 references
15 November 1995
0 references
Es sei \(\chi\) ein Dirichletscher Charakter \(\pmod k\). Der Verf. beweist für \({1\over 2}\leq \sigma\leq 1\), \(| t|\geq 2\) \[ | L(\sigma+ it, \chi)|\leq ck^{1-\sigma} | t|^{\alpha (1- \sigma)^{3/2}} \max (\log k, \log^{2/3} | t|) \] mit \(\alpha= 21,5028\) und einer numerischen Konstanten \(c\). Damit verschärft er eine analoge Abschätzung von \textit{E. I. Panteleeva} [Mat. Zametki 44, 494- 505 (1988; Zbl 0665.10028)]. Der Beweis beruht auf der Abschätzung \[ \Bigl| \sum_{kN< n\leq kN_ 1} \chi(n)\;n^{it} \Bigr|\leq AkN \exp \{-B \log^ 3 N/\log^ 2 t\} \] für \(N,N_ 1\in \mathbb{N}\), \(2\leq N\leq t/2\), \(N_ 1\leq 2N\), \(t\geq t_ 0\) mit einer numerischen Konstanten \(A\) und \(B= 1/3121\).
0 references
effective order estimate
0 references
Dirichlet \(L\)-functions
0 references
critical strip
0 references
0 references
0.90894324
0 references
0.9057966
0 references
0.90461224
0 references
0.8967414
0 references
0.89491594
0 references
0.89466244
0 references