Error bounds for Lagrange interpolation (Q1344171)

From MaRDI portal





scientific article; zbMATH DE number 720665
Language Label Description Also known as
English
Error bounds for Lagrange interpolation
scientific article; zbMATH DE number 720665

    Statements

    Error bounds for Lagrange interpolation (English)
    0 references
    0 references
    9 February 1995
    0 references
    Consider an interpolation of functions \(f\in W_ \infty^ m [a,b]\) by Lagrange polynomials \(\ell_{m-1}\), \(\Delta(f)\) of degree \(m-1\) at the mesh \(\Delta\) of the interpolating nodes \(\{t_ j\}^ m_ 1\). Error bounds due to this approximation is evaluated as \[ L_{m,k} (\Delta)= \sup_{x\in [a,b]} L_{m,k} (\Delta,x)= {\textstyle {1\over m!}} \omega_ \Delta^{(k)} (\cdot), \] for all \(m\) and \(k\) \((0\leq k\leq m- 1)\), and for any mesh of the interpolating nodes.
    0 references
    error bounds
    0 references
    Lagrange polynomials
    0 references

    Identifiers