Nonexistence of universally accelerating linear summability methods (Q1344342)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonexistence of universally accelerating linear summability methods |
scientific article; zbMATH DE number 721011
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonexistence of universally accelerating linear summability methods |
scientific article; zbMATH DE number 721011 |
Statements
Nonexistence of universally accelerating linear summability methods (English)
0 references
6 September 1995
0 references
The equivalence of two Toeplitz matrices is deduced from their transformation properties with regard to convergent sequences. Let \(a(m,n)\) and \(b(m,n)\) \((m,n \geq 1)\) be the elements of two regular Toeplitz matrices \(A\) and \(B\). \({\mathcal S}\) being a representative convergent sequence, denote its members by \(S(n)\) \((n \geq 1)\) and its limit by \(L({\mathcal S})\). Set \(\sigma (A \| S,m) = \sum a(m,n) S(n)\) \((1 \leq n < \infty)\) for \(m \geq 1\) and define \(\sigma (B \| {\mathcal S}, m)\) for \(m \geq 1\) similarly. If, for every convergent sequence \({\mathcal S}\), \(| \sigma (B \| {\mathcal S},m) - L({\mathcal S}) | \leq K ({\mathcal S}) | \sigma (A \| {\mathcal S}, m) - L({\mathcal S}) |\) \((m \geq 1)\), where \(K({\mathcal S})\) depends upon \({\mathcal S}\) but not upon \(m\), then (a) for some \(p \geq 1\), \(a(m,n) = b(m,n)\) \((n \geq 1)\) for all \(m \geq p\) and (b) \(A\) and \(B\) sum the same sequences.
0 references
linear summability methods
0 references
Toeplitz matrices
0 references
summability equivalence
0 references
convergence acceleration
0 references