Equivariant Stiefel-Whitney classes (Q1345015)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Equivariant Stiefel-Whitney classes |
scientific article; zbMATH DE number 727072
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Equivariant Stiefel-Whitney classes |
scientific article; zbMATH DE number 727072 |
Statements
Equivariant Stiefel-Whitney classes (English)
0 references
28 February 1995
0 references
This paper gives a number of results on equivariant Stiefel-Whitney classes for equivariant orthogonal vector bundles over schemes. If \(G\) is finite and acts trivially on the base \(X\), then \(H^i(X_{et},G;\mathbb{Z}/2)=\sum_{j+k=i}H^j(X_{et};\mathbb{Z}/2)\otimes H^k(G,\mathbb{Z}/2)\) so we may decompose the \(i\)th Stiefel-Whitney class into the sum of \(w_{j,k}\in H^j(X_{et};\mathbb{Z}/2)\otimes H^k(G,\mathbb{Z}/2)\). This paper investigates \(w_{1,1}\), calculates \(w_{j,k}\) for an illuminating example, and investigates Stiefel-Whitney classes of trace forms.
0 references
equivariant Stiefel-Whitney classes
0 references
equivariant orthogonal vector bundles
0 references
schemes
0 references
0 references
0 references