Regularity of the Dirichlet problem in convex domains in the plane (Q1345488)

From MaRDI portal





scientific article; zbMATH DE number 731831
Language Label Description Also known as
English
Regularity of the Dirichlet problem in convex domains in the plane
scientific article; zbMATH DE number 731831

    Statements

    Regularity of the Dirichlet problem in convex domains in the plane (English)
    0 references
    0 references
    8 March 1995
    0 references
    The boundary value problem \(\Delta u = f\) in \(\Omega\), \(u = 0\) on \(\partial \Omega\) is considered for a bounded convex domain \(\Omega \subset \mathbb{R}^ 2\). The main result is: Let \(f \in L^ p_{1 - \varepsilon} (\Omega)\) with \(0 < \varepsilon < 1\), \(1 < p < 2/(2- \varepsilon)\), then \(u \in L^ p_{3 - \varepsilon} (\Omega)\) and \(\| u \|_{L^ p_{3 - \varepsilon} (\Omega)} \leq C \| f \|_{L^ p_{1 - \varepsilon} (\Omega)}\). The convexity is necessary for obtaining the above result.
    0 references
    convex domains in the plane
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references