Minimum-volume ellipsoids containing compact sets: Application to parameter bounding (Q1345621)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Minimum-volume ellipsoids containing compact sets: Application to parameter bounding |
scientific article; zbMATH DE number 732002
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Minimum-volume ellipsoids containing compact sets: Application to parameter bounding |
scientific article; zbMATH DE number 732002 |
Statements
Minimum-volume ellipsoids containing compact sets: Application to parameter bounding (English)
0 references
26 November 1995
0 references
The problem of finding the minimum volume ellipsoid containing a compact subset of the Euclidean space \(\mathbb{R}^p\) is considered. Optimality conditions are derived. Two algorithms -- a vertex-direction algorithm and a fixed point algorithm -- are given. The method is then applied to parameter estimation from data with bounded model-output errors. The results obtained for two linear and a nonlinear example are presented.
0 references
parameter bounding
0 references
bounded error estimation
0 references
minimum volume ellipsoid
0 references
vertex-direction algorithm
0 references
fixed point algorithm
0 references
parameter estimation
0 references
0 references
0 references
0 references