Stability of the identity map of \(SU(3)/T(k,l)\) (Q1346787)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stability of the identity map of \(SU(3)/T(k,l)\) |
scientific article; zbMATH DE number 737430
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stability of the identity map of \(SU(3)/T(k,l)\) |
scientific article; zbMATH DE number 737430 |
Statements
Stability of the identity map of \(SU(3)/T(k,l)\) (English)
0 references
30 October 1995
0 references
In SU(3), consider the one-parameter subgroup \[ T(k,l) = \{\text{diag} [e^{2\pi ik \theta}, e^{2\pi il \theta}, e^{-2\pi i(k + l) \theta}]; \quad \theta \in \mathbb{R}\}, \] where \(k\), \(l\) are relatively prime integers. Endow SU(3) /\(T(k,l)\) with the SU(3)-invariant Riemannian metric \(g\) induced from an invariant metric on the Lie algebra \({\mathfrak s} {\mathfrak u}(3)\). The author proves that the identity map of (SU(3)/\(T(k,l), g)\) is stable.
0 references
stable harmonic map
0 references
invariant Riemannian metric
0 references
0.84336615
0 references
0.84304535
0 references
0.8394697
0 references
0 references
0 references
0.83141494
0 references
0.8253105
0 references
0 references