Scaled Toda-like flows (Q1347227)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Scaled Toda-like flows |
scientific article; zbMATH DE number 740263
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Scaled Toda-like flows |
scientific article; zbMATH DE number 740263 |
Statements
Scaled Toda-like flows (English)
0 references
4 April 1995
0 references
This very interesting paper discusses the solution of various scaled Toda-like flows of the form \(x' = [x, A\circ x]\), \(x(0) = x_ 0\), where \([ , ]\) is a Lie bracket and \(\circ\) a Hadamard product. The presence of \(A\) allows arbitrary and independent scaling for each element of the matrix \(x\). Various choices of \(A\) are considered which lead, for example, to the continuous power method and the QR algorithm as applied to \(x_ 0\). A convergence theorem is given which allows \(A\) to be chosen in such a way that the convergence of the classical Toda flow is accelerated. This paper concludes with various choices of \(A\) aimed at aggregating the eigenvalues of \(x_ 0\) into blocks.
0 references
scaled Toda-like flows
0 references
continuous power method
0 references
QR algorithm
0 references
convergence
0 references
0 references
0 references
0 references
0 references
0 references
0.8532994
0 references
0 references
0 references
0.8404409
0 references
0.84015083
0 references
0.83988124
0 references