On the distribution of inverses modulo \(n\) (Q1352644)

From MaRDI portal





scientific article; zbMATH DE number 980272
Language Label Description Also known as
English
On the distribution of inverses modulo \(n\)
scientific article; zbMATH DE number 980272

    Statements

    On the distribution of inverses modulo \(n\) (English)
    0 references
    12 October 1997
    0 references
    Let \(n>2\) be an integer. For any integer \(0<a<n\) with \((a,n)=1\) there exists exactly one \(\bar{a}\) with \(0< \bar{a} <n\) such that \(a \bar{a} \equiv 1 \bmod n\). The main purpose of the present paper is to study the asymptotic behaviour of the function \[ S(n,\delta) \colon = |\{ 1 \leq a \leq n-1; (a,n)=1, |a- \bar{a}|< \delta n \} |,\quad 0 < \delta \leq 1\, . \] Using estimates for Kloosterman sums and trigonometric sums the author derives the asymptotic formula \[ S(n,\delta) = \delta (2-\delta) \varphi(n) + O(n^{1/2} \tau^2(n) \log^3 n), \] where \(\varphi\) is Euler's function and \(\tau(n)\) denotes the number of divisors of \(n\).
    0 references
    distribution of inverses modulo \(n\)
    0 references
    asymptotic behaviour
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references