On the distribution of inverses modulo \(n\) (Q1352644)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the distribution of inverses modulo \(n\) |
scientific article; zbMATH DE number 980272
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the distribution of inverses modulo \(n\) |
scientific article; zbMATH DE number 980272 |
Statements
On the distribution of inverses modulo \(n\) (English)
0 references
12 October 1997
0 references
Let \(n>2\) be an integer. For any integer \(0<a<n\) with \((a,n)=1\) there exists exactly one \(\bar{a}\) with \(0< \bar{a} <n\) such that \(a \bar{a} \equiv 1 \bmod n\). The main purpose of the present paper is to study the asymptotic behaviour of the function \[ S(n,\delta) \colon = |\{ 1 \leq a \leq n-1; (a,n)=1, |a- \bar{a}|< \delta n \} |,\quad 0 < \delta \leq 1\, . \] Using estimates for Kloosterman sums and trigonometric sums the author derives the asymptotic formula \[ S(n,\delta) = \delta (2-\delta) \varphi(n) + O(n^{1/2} \tau^2(n) \log^3 n), \] where \(\varphi\) is Euler's function and \(\tau(n)\) denotes the number of divisors of \(n\).
0 references
distribution of inverses modulo \(n\)
0 references
asymptotic behaviour
0 references
0.97762764
0 references
0.9661929
0 references
0 references
0.9407873
0 references
0.9113355
0 references