On the integral equation \(f(x)-(c/L(x))\int_ 0^{L(x)} f(y) dy=g(x)\) where \(L(x)=\min\{ax,1\}\), \(a>1\) (Q1353463)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the integral equation \(f(x)-(c/L(x))\int_ 0^{L(x)} f(y) dy=g(x)\) where \(L(x)=\min\{ax,1\}\), \(a>1\) |
scientific article; zbMATH DE number 1005458
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the integral equation \(f(x)-(c/L(x))\int_ 0^{L(x)} f(y) dy=g(x)\) where \(L(x)=\min\{ax,1\}\), \(a>1\) |
scientific article; zbMATH DE number 1005458 |
Statements
On the integral equation \(f(x)-(c/L(x))\int_ 0^{L(x)} f(y) dy=g(x)\) where \(L(x)=\min\{ax,1\}\), \(a>1\) (English)
0 references
24 February 1998
0 references
A singular expansion and regularity properties for a solution of the integral equation in the title are obtained using the Mellin transform and the Fubini theorem.
0 references
Banach fixed point theorem
0 references
Mellin transform
0 references
singular expansion
0 references
regularity
0 references
0 references