A note on the Hardy-Hilbert inequality (Q1353526)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on the Hardy-Hilbert inequality |
scientific article; zbMATH DE number 1005502
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on the Hardy-Hilbert inequality |
scientific article; zbMATH DE number 1005502 |
Statements
A note on the Hardy-Hilbert inequality (English)
0 references
3 July 1997
0 references
Let \(\{a_n\}\) and \(\{b_n\}\) denote two nonnegative sequences in \(\ell^p\). The author proves that \[ \sum^\infty_{m=1} \sum^\infty_{n=1} (a_mb_n)/(m+ n)\leq \] \[ \Biggl\{\sum^\infty_{n=1} \Biggl(\pi/\sin{\pi\over p}- O_q(n)/n^{1/p}\Biggr)a^{1/p}_n\Biggr\}^{1/p}\times \Biggl\{\sum^\infty_{m= 1}\Biggl(\pi/\sin{\pi\over p}- O_p(n)/n^{1/q}\Biggr)b^{1/q}_n\Biggr\}^{1/q}. \] He obtains an explicit representation for \(O_r(n)\) for any \(r>1\), and shows that \(O_r(n)>0\). Thus the standard Hardy-Hilbert inequality becomes a corollary of this result.
0 references
Hardy-Hilbert inequality
0 references
0 references
0 references
0 references
0 references
0.95440066
0 references
0 references