Existentially closed fields with holomorphy rings (Q1354320)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existentially closed fields with holomorphy rings |
scientific article; zbMATH DE number 1006564
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existentially closed fields with holomorphy rings |
scientific article; zbMATH DE number 1006564 |
Statements
Existentially closed fields with holomorphy rings (English)
0 references
5 November 1997
0 references
The paper studies the existence of a model companion for a theory of fields with a predicate for a subring. Precisely it is shown that the theory of fields together with an integrally closed subring, the theory of formally real fields with a real holomorphy ring and the theory of formally \(p\)-adic fields with a \(p\)-adic holomorphy have no model companions in the language of fields augmented by a unary predicate for the corresponding ring. Key facts are that any existentially closed model of each of these theories is not a field and a kind of local-global transfer principle for existentially closed models of these theories.
0 references
existence of a model companion
0 references
theory of fields with a predicate for a subring
0 references
integrally closed subring
0 references
formally real fields
0 references
real holomorphy ring
0 references
formally \(p\)-adic fields
0 references
\(p\)-adic holomorphy
0 references
existentially closed model
0 references
local-global transfer principle
0 references
0.91342723
0 references
0.90141964
0 references
0.9000745
0 references
0 references
0 references
0.88760096
0 references
0.87902296
0 references