Moufang loops of odd order \(p^ \alpha q_ 1^ 2\cdots q_ n^ 2r_ 1\cdots r_ m\) (Q1355611)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Moufang loops of odd order \(p^ \alpha q_ 1^ 2\cdots q_ n^ 2r_ 1\cdots r_ m\) |
scientific article; zbMATH DE number 1014007
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Moufang loops of odd order \(p^ \alpha q_ 1^ 2\cdots q_ n^ 2r_ 1\cdots r_ m\) |
scientific article; zbMATH DE number 1014007 |
Statements
Moufang loops of odd order \(p^ \alpha q_ 1^ 2\cdots q_ n^ 2r_ 1\cdots r_ m\) (English)
0 references
11 June 1997
0 references
Let \(L\) be a Moufang loop of odd order \(p^\alpha q_1^{\alpha_1}\dots q_n^{\alpha_n}\) where \(p\) and the \(q_i\) are primes with \(3\leq p<q_1<\cdots<q_n\) and \(\alpha_i\leq 2\). The authors prove that \(L\) is a group if (i) \(\alpha\leq 3\), or (ii) \(\alpha\leq 4\) and \(p\geq 5\).
0 references
Moufang loops of odd order
0 references
groups
0 references