On a singular perturbation problem (Q1355815)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a singular perturbation problem |
scientific article; zbMATH DE number 1014363
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a singular perturbation problem |
scientific article; zbMATH DE number 1014363 |
Statements
On a singular perturbation problem (English)
0 references
28 May 1997
0 references
The author considers the following Dirichlet problem: \[ \varepsilon^2{\partial^2\over\partial x^2} u_\varepsilon-{\partial^2\over\partial y^2} u_\varepsilon+ u_\varepsilon= f_\varepsilon\quad\text{in} \quad \Omega,\quad u_\varepsilon= 0\quad\text{on} \quad \Gamma=\partial\Omega, \] where \(\omega=]0,\pi[\times]0,\pi[\) and \(f_\varepsilon\) is in the space \(L^2(\Omega)\). It is shown that as \(f_\varepsilon\) converges to \(f\) in \(L^2(\Omega)\), the solution of the Dirichlet problem converges to the solution of \[ -{\partial^2\over\partial y^2} u+ u=f\quad\text{in} \quad\Omega,\quad u(x,0)= u(x,\pi)= 0\quad\text{for} \quad 0<x<\pi. \] A further asymptotic result is also proved.
0 references
singular perturbation
0 references
Dirichlet problem
0 references