Power maps and completions of free groups and of the modular group (Q1357562)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Power maps and completions of free groups and of the modular group |
scientific article; zbMATH DE number 1019695
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Power maps and completions of free groups and of the modular group |
scientific article; zbMATH DE number 1019695 |
Statements
Power maps and completions of free groups and of the modular group (English)
0 references
2 November 1997
0 references
Let \(G\) be a group and \(P_n\colon G\to G\), \(x\mapsto x^n\), \(n\in\mathbb{N}\), be the \(n\)-th power map. If \(K\) is a normal subgroup of \(G\) then let \(P_n(G\bmod K)\) be the preimage of \(P_n(G/K)\) in \(G\). If \({\mathcal K}\) is a family of normal subgroups of \(G\) then let be \(P_n(G\bmod{\mathcal K})=\bigcap_{K\in{\mathcal K}}P_n(G\bmod K)\). For \(G\) let \(\text{Fin }G\) be the set of all normal subgroups of \(G\) of finite index. If \(G=F\) is free then \(P_n(F\bmod\text{Fin }F)=P_n(F)\). Now let \(G=\Gamma=\text{SL}(2,\mathbb{Z})\) be the classical modular group. For each \(N\in\mathbb{N}\) let \(\Gamma_N\) be the principal congruence subgroup of level \(N\). If \({\mathcal K}=\{\Gamma_N\mid N\in\mathbb{N}\}\) then \(P_n(\Gamma\bmod{\mathcal K})\subset P_n(\Gamma)\) for \(n>2\) and \(P_n(\Gamma\bmod\text{Fin }\Gamma)=P_n(\Gamma)\) for all \(n\in\mathbb{N}\).
0 references
profinite topology
0 references
subgroups of finite index
0 references
power maps
0 references
normal subgroups
0 references
modular group
0 references
principal congruence subgroups
0 references